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Abstract. A simple analysis of the bound-free system shows that for a narrow continuum 
the Fermi golden rule can be generalised for the high-intensity regime. This generalisation 
has the form of a simple expression for the decay rate and helps to explain nearly perfect 
population trapping in the case of a narrowly peaked matrix element. Such population 
trapping means that the decay rate of a bound state strongly coupled to a continuum tends 
to zero for increasing coupling strength only if the matrix element falls off faster than the 
Lorentzian. We also find new solutions for pulsed excitation giving exact population 
trapping in the bound-free transition. 

Quantum mechanical systems often undergo transitions from a bound state to a 
continuum. Such transitions, caused either by static or time-dependent perturbation, 
are responsible for decay processes in quantum physics. On the other hand, when the 
continuum has a very ‘narrow’ structure, i.e. the energies of continuum states vary 
only within a narrow band, the bound-free system becomes similar to a two-level 
system. The example of autoionisation resonance shows that for strong enough coup- 
ling to a ‘narrow’ continuum the exponential decay of the bound state may be 
accompanied by ‘beats’ of population, similar to Rabi oscillations (Fano 1961). Con- 
sidering the band structures in solids, we deal with almost ‘rectangular’ matrix elements 
describing the interaction with the continuum (ionisation thresholds in negative ions 
give only a one-side cut-off of the matrix element). Also interactions with optical 
phonons give examples of narrow continuum structure, where the matrix element falls 
to zero far from the resonant centre (see, for example, von Foerster and Glauber 1971). 
It is obvious that in the limit of small width of the continuum we deal with a two-level 
atom. The same similarity can be found when we increase the coupling strength for 
a given and constant width of the continuum (‘saturation of the continuum’). As we 
mentioned, such an effect was found for autoionisation, described with the help of a 
bound-free system with a Lorentzian-shaped matrix element. The saturation 
phenomena for such types of coupling were discussed in detail by Cohen-Tannoudji 
and Avan (1977). A recent study of this system with a more rapidly decreasing Gaussian 
matrix element has shown a decreasing decay rate for increasing coupling strength 
(Rzgzewski and Mostowski 1987). 

In the first part of our paper we analyse the bound-free system for a set of model 
coupling functions giving exact non-perturbative solutions. In the second part we find 
a general formula for the decay rate for an arbitrarily ‘narrow’ matrix element in the 
strong-coupling limit. This formula expresses the value of the decay rate by the matrix 
element shifted from the energy conservation condition. Such a formulation is therefore 
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similar to Fermi’s golden rule, which describes the opposite, weak-coupling limit. 
Finally we present a solution for a time-dependent coupling in order to get a better 
understanding of the bound-free interaction in the strong-coupling limit. The bound- 
free system in the non-perturbative regime has been analysed many times via various 
approaches in the literature (Fano 1961, Heller and Popov 1976, Cohen-Tanoudji and 
Avan 1977, Lambropoulos and Zoller 1980, Andryushin et al 1982, Coleman and 
Knight 1982; see also Cohen-Tannoudji et a1 1977). However our analysis is the first 
to describe the asymptotic limit for arbitrary coupling to ‘narrow’ continua. 

We consider a quantum mechanical system consisting of one discrete level 10) and 
a continuum of states Iw )  with standard normalisation 

(01 0) = 1 ( w  I w ’ )  = 6 ( w  - U ’ ) .  

The Hamiltonian of such a system consists of a free part: 

which is time independent for the transitions caused by static perturbation. For the 
harmonic, time-dependent perturbations, such as in the important case of the interaction 
with coherent monochromatic light, the rotating-wave approximation brings the interac- 
tion to the time-independent form (2). All the energy integrals will be extended from 
--CO to +a, so our model can be applied sufficiently far above the threshold. 

The dynamics is fully determined by the matrix element C l ( w ) .  In the well studied 
regime of weak coupling the probability P (  t )  of remaining in the bound state decays 
exponentially: 

P(  t )  = e-r‘ (3) 

r = 2 . r r ( ~ ( w o ) / 2 .  (4) 

with the decay rate given by Fermi’s golden rule (FGR; see Fermi 1950): 

Note that the rate is determined by the local (corresponding to the energy conservation) 
value of the coupling. The textbook perturbative formulation of FGR deals with short 
times (rf<< 1). For such times the decay probability increases linearly with time: 

As the coupling strength increases the global properties of a(@) become relevant. 
Only the ‘flat continuum’ ( n ( w )  = A = constant) gives an exact exponential decay, with 
the decay rate proportional to the coupling intensity (e.g. P ( t )  = exp(-2.rrA2t)). For 
such coupling the ‘photoelectron spectrum’ i.e. the population of the continuum 
S ( w )  = l (9 ( t ) lw)12  for t +co has an exact Lorentzian shape S ( w )  = A 2 ( ~ 2 + ( ~ A 2 ) 2 ) - ’ .  

For other forms of the matrix element, saturation phenomena occur. In such cases 
the probability P ( t )  undergoes damped oscillatory motions. It has been noted only 
recently (Rzqzewski and Mostowski 1987) that the asymptotic value of the damping 
depends on the way the function Q ( w )  falls off from its centre (we assume a resonant 
maximum at wo).  For fast decreasing continua the decay rate tends to zero for strong 
coupling, which means an almost exact ‘population trapping’. 

i - ~ ( t ) = r t .  
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The main aim of this paper is to obtain a simple estimate of the residual decay 

The Schrodinger equation for our system leads to a set of integrodifferential 
rate of resonant, saturated, bound-free transitions. 

equations for the probability amplitudes p ( w ,  t )  = ( w l q ( t ) )  and a ( t )  =(019( t ) ) :  

a,a(t)= -iwoa(t)-i  dwR(w)P(w, t )  

a,@(@, t)=-iwp(w, t ) - iR(w)a( t )  
( 5 )  

I 
with the initial conditions a ( 0 )  = 1 and p ( w ,  0) = 0. 

has the form R , ( w )  = R O g n ( w ) ,  where g, is (for 5 dwlg,(w)12= 1): 
This set of equations is easily solvable by Laplace transform if the matrix element 

1 

[(U - W O )  + (iy/V5)lfl. 
gll = Nll 

The normalisation factor N,, is given by 

Note that in the limit n -+ CO we obtain a Gaussian coupling. 
The Laplace transform of a ( t )  takes the form 

To find the explicit form of a (  t )  we have to perform the integral in ( 7 )  for Re z > 0 
(evolution for t > 0) to find F ( z ) .  In the case when the matrix element has the form 
R ( w )  = R , ( w )  (‘generalised Lorentzian’ coupling) F ( z )  is just a polynomial, and 
therefore zeros of F ( z )  (e.g. pole contribution to the inverse Laplace transform; see 
also Weisskopf and Wigner (1930) )  can be easily found, at least numerically. 

The most common shape of the resonance is that of the Lorentzian type R l ( w )  (we 
take w, = 0 for simplicity). In the weak-field limit (no < y ) ,  we have “type decay 
(the spectrum is Lorentzian in this case). For strong coupling (a, >> y )  the asymptotic 
behaviour for the probability amplitude a( t )  is given by (Cohen-Tanoudji 1977, 
Rzgzewski and Eberly 1981, Rzgiewski and Mostowski 1987): 

a ( t )  =exp(-rt/2) cos(R,t). ( 8 )  
It is seen that we have ‘beats’ of the probability amplitude. The saturated (no>> y )  
decay rate r is independent of the coupling strength R, and is equal to the width of 
the continuum y (the frequency of beats Rb  tends to no). In the limit y -+ 0 we recover 
the well known undamped Rabi oscillations. 

Analysing the explicit form of a ( t )  calculated from ( 7 )  for the coupling R(w) = 
R,(w), we found that such Rabi-like oscillations appear for all n strong enough 
coupling e.g. the probability amplitude has the form 

a( t )=exp(-T(Ro)t /2)  cos(R,(n,)t). ( 9 )  
The coupling strength enters through the parameter R,. We found that in the strong- 
coupling limit (e.g. no >> y )  the frequency of beats R, tends to R,. A natural con- 
sequence of such population beats is that the ‘final’ population of the continuum 
S ( w )  = I(*( t -+ c0)lw)l’ consist of two peaks around w 5 *Rb(Ro) (figure 1; see also 
Autler and Townes (1955)) .  
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Figure 1. Population of the continuum S ( w ) = I ( ' P ( t - , c ~ ) ~ w ) l  ( a )  plotted with the matrix 
element /R,(w)/* ( b ) .  The intensity is R, = 4y. 

Analysing the decay rate r (Ro)  we found an asymptotic behaviour I'(Ro)= 
(Clo)-2(n-1), which means that if only n > 1 the decay rate tends to zero (see also 
Rzgzewski and Mostowski 1987) in the strong-coupling limit. Remarkably the decay 
rate must be well estimated by the square of the matrix element taken in place 
corresponding to the peaks in the continuum, e.g. 

r (Ro)  = X ( S Z , ) ~ ( ~  = & , = R ~ ) I ~ .  (10) 

Such a formulation may be viewed as a straightforward generalisation of the perturba- 
tive FRG. The function x(Cl0) for weak couplings (perturbative regime) is simply equal 
to 27r. In figure 2 the ratio ~(Cl,)=T(R,)/27r~Cl(R~)1~ is plotted for varying Ro and 
different n (we take Cl (w)  =Cl,(o)). 

As we can see, for strong couplings (no>> y )  the factor ,y(Cl0) approaches 7r 

(x(Ro)=i ,  which is a result independent of n. For square integrable couplings 
(l dWIR(W)/2 < CO) this is a general feature which can be shown analytically. 

1 I I I 
-2 0 2 4 

Loglo (Q, IT)  

Figure 2. Parameter ~ (0 , )  = r(n0)/2~jn(R,)l2 plotted against log,,(R,/y) for ( a )  n = 1 
and ( b )  n = 5 .  
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We assume that the matrix element has the form f l ( w )  = f l o g ( w )  where dwlg(w)12 = 
1. For flo+cc the estimate of the zeros of F ( z )  with the smallest negative real part 
can be done as follows. Our task is equivalent to finding zeros of zF(z)/R;= 
(z/fl,)’+ 1 + G(z) where for pure imaginary z G ( z )  is given by 

- 1. 

We found that the function G(z) has the property that IzI<< y+lG(z)l<< 1. This 
property allows us to solve the equation zF(z)/fli = 0 perturbatively with respect to 
G(z), only if the solution z, (z,F( z,) = 0) fulfils Iz,I << y. As we will see later our solution 
fulfils this condition when fl, >> y, so our method is self-consistent in the regime of 
strong coupling. 

The zeroth-order solution is equal to z: = *iflo ((zf/fl0)’+ 1 = 0). The first-order 
solution gives 

( ~ g l / f l o ) ’ +  1 = -G(z:). 

Calculating G(z:) from (3.2) and applying an approximation 

2Az0 

we get A using the well known property of distributions 

(x - i E )  

The real part of A gives us the decay rate in the strong-coupling limit (r(f10)/2= 
-Re( A))  : 

V f l O )  = ~l f l ( f l 0 ) I ’ .  (12) 

As we can see, in the strong-coupling regime we have a compact expression for the 
decay rate of a bound state coupled to a continuum, very similar to Fermi’s golden 
rule which describes the weak-coupling regime. A simple consequence of this new 
rule for strong couplings is the occurrence of population trapping for matrix elements 
‘narrower’ than the Lorentzian. 

Let us generalise our model to the case of the time-dependent interaction HI= 
f ( t )  1 d o  f l ( w ) ( l O ) ( w l +  lw)(Ol) .  The Schrodinger equation for the system has the form 
(we substitute a -$ a exp(iw,t) and p + p exp(iwot)) 

d,a( t )  = -if(t) dw R(o)p(w, t )  

a ,p (w,  t )  = -i(w - w o ) p ( w ,  t ) - i f ( t )n (w)a ( t ) .  

Such a Hamiltonian can describe, for example, a quantum optical system decaying in 
the electromagnetic field of a laser pulse. 

The equations (13) can be solved explicitly for the exponentially growing coupling 
(Kukliliski and Lewenstein 1987): f ( t )  = ellT (assuming that for t = --CO only the bound 
state is populated and f l ( w )  = f l , , (w)) .  Such a coupling, valid till t = 0 describes a 
smooth turning on of the laser light. We perform a change of variable t + z = e l lT  (this 
induces d, + z/T~,). Now, we expand functions a ( z (  t ) )  and p ( w ,  z( t ) )  into a Taylor 
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series, e.g. a ( z )  = Ea,z" and p ( w ,  z )  = Eb, (w)z" .  Therefore the set of equations (13) 
lead to the following recurrence relations for coefficients a, and b , (w) :  

n/Ta, = - i f ( t )  dw R ( w ) b , - , ( w )  

( n /  T + i (w  - wo) )b ,  ( w )  = -if( t ) n ( w ) a , - ,  . 
I 

We easily solve this recurrence, obtaining under the assumption a ( z  = 0) = 1 and 
p (w ,  z = 0 )  = 0 the solutions 

where a, = l T ( ~ d w I ~ ( w ) 1 2 ( ( 2 k - 1 ) / . r + i ( w - w o ) ) - ' ,  Taking n ( w )  = n , , ( w )  we obtain 
for a ( z )  the Taylor series of a generalised hypergeometric function ,-,I=,(. . . ; -cz'). 

For n ( w )  = fl,(w) our solution has the form 

G+1/2  
a ( e ) =  I F , {  ( G +  1)/2, ( G +  

where e = 7n02 (dimensionless 'pulse area') and G = 7.r. 

see the decay channel is fully shut down. 
In figure 3 we show the ground-state population p ( 0 )  obtained from (16). As we 

We can explain it analysing an 'adiabatic generalisation' of the formula (9); 

a (  t )  = exp ( - 11% dt'  ~ I C l ( f l , (  t f ) ) 1 2 )  cos (1' dt '  no( t ' ) )  . (17) 
-m 

Note that the integral 5 dt  ~lfl(.CL,( t))l' is finite, which means an incomplete damping. 
The analytic solution presented here for the time-dependent interaction shows that 

if the bound-free coupling increases sufficiently fast in time, the population trapping 
is full. 

0 . 6  \ ::I, ~, 
0 

0 10 20 30 40 

e 

Figure 3. Population of the bound level p ( 8 )  = la(8)12 plotted against the pulse area 8 for 
the exponential pulse. 
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To summarise: we have presented an  analysis of the interaction of a discrete level 
with a narrow continuum in the highly non-perturbative regime. We have investigated 
the situation when the coupling strength increases for a given width of the continuum- 
in such a case the bound-free system becomes similar to a two-level atom because of 
the oscillatory behaviour of the bound-state population. Our analysis shows the 
existence of a well defined strong-coupling limit for the dynamics of the bound-free 
system, described by a general formula connecting the decay rate with the value of 
'the matrix element shifted from the energy conservation condition. The value of this 
shift depends on the global structure of the matrix element and  reflects the non- 
perturbative character of the asymptotic solution. 
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